

Radar Industrial Base Study

Office of DUSD (Industrial Affairs)
May 3, 2001

Study Parameters

Key Goals:

- Identify radar technology trends
- Evaluate DoD demand for radar products over the next decade
- Determine whether there is sufficient demand to support multiple radar suppliers
- Competition Issues:
 - Is there sufficient competition (<u>i.e.</u>, multiple suppliers with capabilities and market presence to credibly compete)?
 - What is the extent of vertical integration into radar subtier supplies?

Scope of Study: Product Coverage

- Air and missile defense radars, plus other relevant applications*.
 - All frequency bands, architectures, platform types.
- Both domestic and foreign sales.

^{*} In the slides that follow, "radar" will refer to systems within this scope. Other applications were included when they were deemed to support air and missile defense radar design and/or production base.

Radar Technology & Industrial Trends

Information Sources

- Information was obtained from multiple sources including:
 - DoD: Inputs collected by Services and Agencies from their program offices.
 - DACIS: Defense/Aerospace Contracts Database compiled by InfoBase Publishers, Inc.
 - Industry: Discussions with defense radar contractor personnel.
 - Open Sources: Press releases, internet, etc.

Radar Performance Evolution

Radar Technology Evolution

Past Mechanically Steered Antenna (MSA)

- Reflector antenna
- Transmitter tube
- 1-3 fixed channel analog receiver
- Simple waveform set
- Low noise RF
- Standard A/D and D/A conversion

Current

Active Electronically Steered Antenna (AESA)

- Flat antenna array
- Hi-power MMIC
- 4-18 fixed channel analog receiver
- Complex waveform set
- Very low noise RF
- High speed large dynamic range A/D and D/A conversion

<u>Future</u> Digital Radar

- -Conformal antenna array
- -Very high power MMIC
- -Variable channel digital receiver
- -Direct digital synthesis waveforms
- -Extremely low noise RF
- -Module level high speed large dynamic range A/D & D/A conversion

Radar Development Programs

<u>Program</u>	High Band?	AESA?	Lockheed Martin	Northrop Grumman	<u>Raytheon</u>
APG-77 (F-22)	√ (X)	✓		✓	
APG-79 (F/A-18)	√ (X)	✓			✓
F-16 Block 60(UA	Æ) √ (X)	✓		✓	
JSF	√ (X)	✓		?√	?√
MP-RTIP	√ (X)	✓		✓	✓
ASTOR(UK)	√ (X)	✓			✓
MEADS MFCR	√ (X)	✓	✓		
THAAD Radar	√ (X)	✓			✓
XBR	√ (X)	✓			✓
SPY-3	√ (X)	✓			✓
HPD-X	√ (X)	✓			✓
SS SPY	(S)	1	√		
Wedgetail(Aus)	(L)	✓		✓	
VSR	(L)	✓	?√		?√
MEADS SR	(UHF)	✓	✓		
DASR	(L)				✓

High Band Technology Low Band Technology May Be Either Technology (For details, see "High/Low Band Partitioning" chart)

Radar Applications Share Many Common Elements

	Radar Platform Applications				
Radar	Air/Land/Sea	Air Only	Land Only	Sea Only	
Elements			-		
Signal	- Target identification				
Processing	& discrimination			- Multiple array	
	- Clutter suppression			control & processing	
	- Jammer	- Moving Platform-target		- Wave form softening	
	Suppression	- Moving clutter		& adaptive wave	
	- Radar data	- Air/ground intelligence		forms	
	conversion	- Ground mapping	- Site specific clutter	- Multipath & ducting	
Hardware	- Low phase noise				
Design	exciter				
	- T/R modules				
	- AESA	- Volume, power, cooling			
	power/cooling	constraints			
	- Power conversion	- Low observable antenna	Large array	Large array	
Manufacturing	- System assembly,				
	integration & test				
	- Array calibration &				
	test				
	- Built-in-test	- High integrity circulators			
	- RF subsystem	- Array structure; precision	Transportability		
	assembly & test	machinery	environment	Sea environment	
		- Air environment			

Elements of radar design and architecture are common across host platform types to varying degrees. AESA technology increases that commonality.

Demand

Radar Demand by Platform Type (FY'00 - '07)

Average Annual Production: \$2.4 B Average Annual R&D: \$1.4 B

Source: DoD & DACIS

Radar Demand by Funding Source (FY'00 - '07)

FMS: Foreign Military Sales, DCS: Direct Commercial Sales (Foreign)

Foreign sales accounts for 30% of production, but less than 10% of R&D. BMDO, Air Force and Navy drive R&D funding.

Competition Issues

US Radar Manufacturers

- Three large manufacturers capture 96%* of production and 99%* R&D.
 - Lockheed Martin:
 - Air & ground: Syracuse, NY
 - Ship: Moorestown, NJ (mostly SPY-1)
 - Goodyear, AZ (SARs)
 - Northrop Grumman:
 - Most production in Baltimore (mostly airborne)
 - Smaller operations in Norwalk, CT (JSTARS) and Melville, NY (ship)
 - Raytheon: Current activities:
 - Large land and ship: Boston area; production in Andover, MA
 - Air and small land: Fullerton, El Segundo, CA (production in Forest, MS);
 McKinney, TX (SARs)
 - Air Traffic Control: Waterloo, ONT
- Small manufacturers producing niche products.
 - Telephonics: Farmdale, NY (SARs)
 - ITT Gilfillan: Van Nuys, CA (ship and ATC)
 - etc.

Source: DoD & DACIS

Radar Production by Company (FY'00 - '07)

Each of the major suppliers is market lead for one platform type. Airborne is 53% of the market.

Radar R&D by Company (FY'00 - '07)

Total Market Share by Company (FY'00 - '07)

Total AESA Market (FY'00 - '30)

Total Market = \$24.1 B

Total Market = \$10.2 B

Note: This and the following slide use data through FY'30. Data extending beyond the original '00-'07 set becomes sparse.

X-Band AESA vs Total Radar Production Base (FY'00 - 30)

Total Market = \$19.5 B

Total Market = \$40.3 B

X-Band AESA vs Total Radar R&D Base (FY'00 - '07)

X-Band AESA Radar

Total Market = \$5.9 B

Total Radar

Total Market = \$11.1 B

Key Capabilities and Skills

Radar Key Capabilities

Capability	<u>Hardware</u>	<u>Software</u>	<u>Integration</u>
Hardware Design & Fabrication			
Active Array Technology			
Environmental Packaging & Constraints			
Signature Control			
Electronic Protection			
Discrimination Methods			
Multi Function Scheduling & Control			
Surface Mapping & Targeting			
Air Target Processing			
Subsystem Integration			
Platform Integration			
Weapon / Combat System Integration			

High/Low Band Partitioning

Low Band (<= S Band) Typical Characteristics:

- System
 - Low precision
 - Surveillance/ target acquisition
- Production methods
 - Low technology
 - No clean room required
 - Discrete components
 - Manual assembly
 - Reflow solder attachment on simple printed circuit board

High Band (>= S Band) Typical Characteristics:

- System
 - High precision
 - Multiple simultaneous functions
- Production methods
 - High technology
 - Clean room required
 - MMIC components
 - Automated precision manufacture
 - Robotic attachment to high density multi-layer interconnect substrate

Radar functions and manufacturing processes provide a natural frequency partition.

Inter-Platform Mapping Hardware

Hardware Design and Fabrication

- Low noise, low phase noise transmit and receive subsystems; efficient, high power
- Direct digital synthesis and sampling
- Wide bandwidth, large dynamic range processing
- Radar structures for mechanical, electrical, power, and cooling performance

Active Array Technology

- T/R Modules
- Module components (MMICs, Circulators, Interconnects, etc.
- Subarray/array design, fab, and calibration

Environmental Packaging and Constraints

- Physical constraints
- Weight, power, and cooling
- Sand, salt spray, temperature extremes, etc

Strong link carries over intact.

Weak link carries over somewhat.

No link implies no carryover

Inter-Platform Mapping Hardware/Software

Signature Control

- Low observables technology design, fabrication, and integration
- Low probability of intercept waveforms
- Radar / radome / platform structure integration for signature control

Electronic Protection

- ECCM measures: Adaptive beam nulling, sidelobe suppression/blanking, moving target indication, clutter suppression, etc.
- Electronic support measures: External signal detection, classification, and direction finding

Discrimination Methods

- Automatic target recognition
- High resolution for aimpoint selection
- Debris / decoy discrimination

Inter-Platform Mapping Software

Multi-Function Scheduling and Control

- Adaptive search, track, engagement control
- Interleaved air search/track and ground mapping
- Special functions: Terrain following, precision approach control, missile midcourse guidance command, etc
- Complex waveform generation

Surface Mapping and Targeting

- Surface mapping techniques: SAR, ISAR, GMTI
 - Real time automatic targeting
- Detection and tracking methods
- Navigation, terrain following

Air Target Processing

- Target / clutter separation
- Space time adaptive processing
- Waveform shaping / softening
- Coherent & non-coherent integration
- High resolution processing techniques

Inter-Platform Mapping Integration

Subsystem Integration and Test

Integration of transmitter, receiver, antenna, antenna control, processor, software into a system

Platform Integration

 Integration of radar into platform structure for proper mechanical, electrical, cooling, and signature fit and performance.

Weapon / Combat System Integration

 Physical, electrical, and data interface with interceptor systems and information systems of the host platform.

Radar Prime Involvement in Lower Tier Supply Chain

2nd Tier

- •Radomes
- •Antennas
- •Transmitter Tubes
- T/R Modules
- •Receiver / Exciters
- Processors
- •Power Supplies
- •Power Converters
- •A/D, D/A Converters

Xx: Radar prime in-house
Xx: Merchant supplier

Xx: Both

3rd Tier

- •MMICs
- Power Transistors
- •Circulators
- •Interconnect / Substrates
- Module Casings
- •AlSiC moldings
- •Optoelectronic Amplifiers
- •SAW Devices
- •ASICs
- •Oscillators
- Phase Shifters

4th Tier

- Semiconductor wafers
- Oscillator crystals
- Waveguide
- Connectors
- •Cabling, electric & optical
- •Discrete electronic components
- •Solder, epoxy, etc.
- •Programming Languages
- •Software Development Tools
- •CAD/CAM Software

Primes typically fabricate in-house those items which are discriminants or which are not available from merchant suppliers.

Open Architecture & Competition

- History of upgrades and modifications
 - Usually awarded to incumbent as the only source with the system knowledge
 - Most common are signal/data processing upgrades; next are receiver/exciter improvements
- Open architecture facilitates competition in upgrades
 - Isolates elements to be upgraded from the rest of the radar
 - Removes proprietary barriers otherwise unrelated to the upgrade
- Open architecture requires:
 - Modular, loosely coupled architecture
 - Well defined publicly available interface formats
 - Best suited to digital elements, so is becoming more practical as radar evolves from analog to digital componentry
- JSF is pursuing radar open architecture to facilitate upgrades and parts obsolescence control

Findings and Conclusions

- AESA is becoming the military radar standard
 - Increased commonality of the tech base across platforms (land, sea, air)
- Demand is robust
 - Sufficient demand exists to sustain three major competitors
- The market is more equitably distributed than contractor expressed concerns would suggest
 - No specific DoD actions are required today to maintain sufficient capability and competition
 - Procurement and R&D funding spread across companies is sufficient to adequately maintain key capabilities for each platform type at two or more companies
- Intra-company rationalization of the radar industrial base is warranted
- DoD should require incorporation of open architecture in future radar designs to facilitate upgrades for performance and obsolescence, and open them to competition

DoD should monitor radar market; update study in '02